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Dalhousie U. Facts

Founded in 1818

The smallest Medical/Doctoral university in Canada
— Medical school
— Law school

— Engineering

— Business school
World class

— Oceanography
— Biology

— Medicine

— Sciences
Regional Research Hub for Atlantic Canada




Outline

@ Social Networks

@ Networked Information Spaces (e.g. Citation graphs, Web graph)
@ Social resource sharing and tagging systems

@ Search

@ Community formation

@ Dynamics / growth

@ Knowledge mining

@ Challenges
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Online Social Networks

@ Online communities originally supported by

>

vV vy vYyy

email ('70s)
mailing lists ('80s)
newsgroups ('80s)
blogs (early '00s)
wikis (early '00s)
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Online Social Networks

@ Online communities originally supported by
email ('70s)
mailing lists ('80s)
newsgroups ('80s)
blogs (early '00s)
wikis (early '00s)
@ Contemporary online social networking services (mid '00s)
» purpose is linking people
(linkedin, facebook)
» purpose is to share resources,
linking people is an extra
(flickr, del.ic.ious, yahoo!360, myspace)

v

vV vy vYyy
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Networked Information Spaces

@ Resources (Documents)
@ Explicit links between resources

@ Organically grown by a distributed community of contributors
working independently

@ Examples

Citation graph of research / patent literature

Gopher

World Wide Web

Common Law
Peer-to-peer information networks

vV vy vy VvYyy
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Structure of Networked Information Spaces

@ Small world graphs

» Short diameter
» Small degree of separation (average distance between any two
nodes)

@ Power-law degree distributions (scale-free)
@ “Strongly” connected (hard to break up by removing nodes)
@ A tightly connected core plus small components

Evangelos Milios (Dalhousie Univ.) MoMiNIS July 20, 2008
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The bowtie model of the Web !

.- Tendrils....
g M nades o,
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1Broder, Kumar, Maghoul, Raghavan, Rajagopalan, Stata, Tomkins, Wiener: Graphstructure in the web, WWW-9, 1999
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A model for the citation graph 2

papers form a biconnected
nucleus, it takes 58%.

DALHOUSIE

2An, Janssen, Milios: Characterizing and Mining the Citation Graph of Computer Science, Knowledge and Informatiol
Systems, 2004 o & = —

Evangelos Milios (Dalhousie Univ.) MoMiNIS




Power laws in the citation graph
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Power laws in the citation graph
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Citation graph is hard to break up

Sizes of the largest Weakly Connected Components(WCCs) when nodes with in-degree at least k
are removed from the giant connected component of union citation graph.

size of graph 50,228
k 200 150 100 50 10 5 4 3

size of graph 50,222 50.215 50,152 49,775 46,850 43962 42969 41.246
after removing

size of largest 50,107 49990 48973 43073 26,098 14,677 9963 1,140
WCC
DRIQUITE

Inspiring Minds
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Citation graph is hard to break up

Sizes of the largest Weakly Connected Components(WCCs) when nodes with in-degree at least k
are removed from the giant connected component of union citation graph.

size of graph 50,228
k 200 150 100 50 10 5 4 3
size of graph 50,222 50,215 50,152 49,775 46,850 43962 42969 41,246
after removing
size of largest 50,107 49990 48973 43073 26,098 14,677 9963 1,140
WwCC

Sizes of the largest Weakly Connected Components(WCCs) when nodes with out-degree at least k
are removed from the giant connected component of union citation graph.

size of graph 50,228
k 200 150 100 50 10 5 4 3
size of graph 50,225 50,225 50.224 50,205 48,061 43964 42238 39,622
after removing
size‘(;:;fé?:rgest 50,202 50,202 50,198 50,131 46,092 37,556 33279 26489
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Dynamics of citation networks 3

@ Densification:
» Average degree increases over time
» according to a power law, e(t) « n(t)?,
e(t), n(t) number of edges/nodes at time t

@ Shrinking diameter as network grows

@ Experimental data from

arXiv citation graph

patent citation graph

autonomous network graph

affiliation graphs (bipartite author/paper graphs)

vV vy VvYy
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3Leskovec, Kleinberg, Faloutsos: Graphs over Time: Densification Laws, Shrinking Diameters and Possible Explanatiors, "
KDD 2005
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Dynamics of social networks #

@ Density

@ Structure
» Giant component
» Isolated star-shaped communities
» Singletons

@ Experimental data from Flickr, Yahoo 360!

DALHOUSIE
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4Kumar, Novak, Tomkins: Structure and Evolution of Online Social Networks, KDD 2006
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Modelling Evolution by Biased Preferential
Attachment®

@ Three types of users (user added at each timestep)
» Passive (no activity)
» Inviters (pull together an off-line community)
» Linkers (full participants)

@ Edges are added at each timestep

» Source chosen at random from inviters/linkers with probability equal
to degree (preferential attachment)

» If source is inviter, a new node is created as destination

» if source is a linker, an existing node is chosen by preferential
attachment from inviters/linkers

5Kumar, Novak, Tomkins: Structure and Evolution of Online Social Networks, KDD 2006
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Social resource sharing and tagging systems

@ On a social bookmarking and tagging system, users:
» store resources (bookmarks, photos, music, video, publications,
etc.)
» tag them with keywords
» establish one-directional friendship/contact links to other users

6Hotho, Jaschke, Schmitz, Stumme: Trend Detection in Folksonomies, SAMT 2006
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Social resource sharing and tagging systems

@ On a social bookmarking and tagging system, users:
» store resources (bookmarks, photos, music, video, publications,
etc.)
» tag them with keywords
» establish one-directional friendship/contact links to other users

@ Tripartite (hyper)graph structure:
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Modelling and Mining social resource sharing and
tagging systems

@ Navigation

@ Search and ranking

@ Hypergraph structure

@ Relation between friendship/contact links and resource/tag
similarities

@ Communities of users

@ Taxonomies of tag concepts / topics (folksonomies)

@ Trend detection, evolution, dynamics

Evangelos Milios (Dalhousie Univ.) MoMiNIS July 20, 2008 14 /25



Ranking: The FolkRank algorithm 7

@ Adapted PageRank:
» Transform tripartite hypergraph into an undirected, weighted
tripartite graph
» Mutual reinforcement: Important resources tagged with important
tags by important users

7Hotho, Jaschke, Schmitz, Stumme: FolkRank: A Ranking Algorithm for Folksonomies, FGIR 2006
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Ranking: The FolkRank algorithm 7

@ Adapted PageRank:

» Transform tripartite hypergraph into an undirected, weighted
tripartite graph

» Mutual reinforcement: Important resources tagged with important
tags by important users

» Random surfer model for setting weight vector w as a fixed point of
iteration w: w «— dAw + (1 — d)p, where A is the row-normalized
adjacency matrix of graph, p is a personalization or topic-specific
bias, and [|w|| = ||A].

» For no bias, p = (1,1,...,1)7

7Hotho, Jaschke, Schmitz, Stumme: FolkRank: A Ranking Algorithm for Folksonomies, FGIR 2006
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Ranking: The FolkRank algorithm 7

@ Adapted PageRank:
» Transform tripartite hypergraph into an undirected, weighted
tripartite graph
» Mutual reinforcement: Important resources tagged with important
tags by important users
» Random surfer model for setting weight vector w as a fixed point of
iteration w: w «— dAw + (1 — d)p, where A is the row-normalized
adjacency matrix of graph, p is a personalization or topic-specific
bias, and ||w| = ||A].
» For no bias, p = (1,1,...,1)7
@ FolkRank
» Compute VVO as fixed point with d = 1
» Compute w; as fixed pomt with d < 1
» Final weight vector is w := Wi — wj

7Hotho, Jaschke, Schmitz, Stumme: FolkRank: A Ranking Algorithm for Folksonomies, FGIR 2006
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Ranking: The FolkRank algorithm 7

@ Adapted PageRank:
» Transform tripartite hypergraph into an undirected, weighted
tripartite graph
» Mutual reinforcement: Important resources tagged with important
tags by important users
» Random surfer model for setting weight vector w as a fixed point of
iteration w: w «— dAw + (1 — d)p, where A is the row-normalized
adjacency matrix of graph, p is a personalization or topic-specific
bias, and ||w| = ||A].
» For no bias, p = (1,1,...,1)7
@ FolkRank
» Compute VVO as fixed point with d = 1
» Compute w; as fixed pomt with d < 1
» Final weight vector is w := Wi — wj
@ Additional Uses of (Adapted) PageRank and FolkRank
» Trend detection (how weights change for specific topics)
» Community detection (influential users for specific topics)
» Summarization R
7Hotho, Jaschke, Schmitz, Stumme: FolkRank: A Ranking Algorithm for Folksonomies, FGIR 2006
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Tag co-occurrence graphs 8

@ \ertices are tags

@ Two tags are linked by an edge if a user has used them both on a
resource

DALHOUSIE
UNIVERSITY

8Cattuto, Schmitz, Baldassarri, Servedio, Loreto, Hotho, Grahl, Stumme: Network Properties of Folksonomies, Al Comr."" "
7
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Tag co-occurrence graphs &

@ \ertices are tags

@ Two tags are linked by an edge if a user has used them both on a
resource

@ Strength of an edge, w(i,j): number of tag assignments the two
tags appear together

@ Strength of a vertex s;: sum of the strength of its incident edges

DALHOUSIE
UNIVERSITY

8Cattuto, Schmitz, Baldassarri, Servedio, Loreto, Hotho, Grahl, Stumme: Network Properties of Folksonomies, Al Comfi."" "
2007
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Tag co-occurrence graphs &

@ \ertices are tags

@ Two tags are linked by an edge if a user has used them both on a
resource

@ Strength of an edge, w(i,j): number of tag assignments the two
tags appear together

@ Strength of a vertex s;: sum of the strength of its incident edges

@ Average nearest neighbour strength Sp,(/): sum of the strengths
of neighbour vertices of vertex i
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Tag co-occurrence graphs &

@ \ertices are tags

@ Two tags are linked by an edge if a user has used them both on a
resource

@ Strength of an edge, w(i,j): number of tag assignments the two
tags appear together

@ Strength of a vertex s;: sum of the strength of its incident edges
@ Average nearest neighbour strength Sp,(/): sum of the strengths
of neighbour vertices of vertex i

@ Statistics of interest

» Cumulative probability distribution of vertex strength
» Scatter plot of s; versus Sy (/)

DALHOUSIE
UNIVERSITY

8Cattuto, Schmitz, Baldassarri, Servedio, Loreto, Hotho, Grahl, Stumme: Network Properties of Folksonomies, Al Comffi."" "
2007
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Tag spam detection

10" T = T
3 Fe
10
r’d
P.(s)
107
— AW
—— filtered
e filtered + shuffled
ot i L
10° 10 10 10

Fig. Cumulative strength distribution for the network of tag co-oceurrence in del.icio.us. P-(s) is the probability of having
a node with strength in excess of s. The black curve corresponds to the whole co-oceurrence network. The two steps indicated
by arrows correspond to an excess of links with a specific weight and can be related to spamming activity, Fxeluding from
the analysis all posts with more than 50 tags removes the steps (dark gray). Shuffling the tags contained in posts (light gray)
does not affect significantly the cumulated weight distribution. This proves that such a distribution is uniquely determined
by tag frequencies within the folksonomy, and not by the semantics of co-occurrence,

Spikes reveal spamming behaviour

DALHOUSIE
UNIVERSITY
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Relation of a vertex strength to that of its neighbours

raw
e filtered T
® filtered + shuffled

Fig Average nearest-neighbor strength Snn of nodes (tags) in relation to the node (tag) strengths s, in del icio. us. Black
dots correspond to the whale co-occurrence network. Assortative behavior is observed for low values of the strength =, while
disassortative behavior is visible for high values of = A few clusters (indicated by arrows) stand out from the main cloud
of data points. As in Fig. 12, such anomalies correspond to spamming activity and can be removed by filtering out posts
containing an excessive number of tags (dark grey). Shuffling the tags (light grev) affects dramatically the distribution of data
points: this happens because the average nearest-neighbor strength of nodes is able to probe the local structure of the network
of co-ocewrrence beyond the pure frequency effects, and is sensitive to patterns of co-occurrence induced by semantics.

@ Positive correlation for small strengths (assortative)
@ Negative correlation for large strengths (disassortative)
@ Spamming behaviour stands out from the main trend

@ DALHOUSIE
UN Y
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User-centred properties of the del.icio.us network

@ We study the relation between friendship and similarity of
bookmarks and tags

DALHOUSIE
nnnnnnnn
,,,,,,,,,,,,,,,,,,,,
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User-centred properties of the del.icio.us network

@ We study the relation between friendship and similarity of
bookmarks and tags
@ Study is centered on relations between users

» friendship graphs
» graphs based on common bookmarks / tags
» graphs based on similarity of bookmarks / tags
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User-centred properties of the del.icio.us network

@ We study the relation between friendship and similarity of
bookmarks and tags
@ Study is centered on relations between users

» friendship graphs
» graphs based on common bookmarks / tags
» graphs based on similarity of bookmarks / tags

@ Questions:

» Do friends share common interests?
» Are tags user specific or generally meaningful?
» What are the density properties of similarity graphs?

More discussion later today.
@ RarigustE

Inspiring Mind
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Resource-centred community formation in

del.icio.us?

@ Each resource is characterized by a tag cloud from the community
of users

@ Two resources are similar if their tag clouds overlap (TF-IDF
weights)
@ Form similarity matrix W

@ Raise similarities to a small power v = 0.1 to reduce dynamic
range
@ Rearrange rows and columns to visually identify community
structure
» Form matrix W;; = (1 — 6; ) Wi,

» Form matrix S;; = d;;>°; Wi

Form matrix Q = S — W
Lowest non-zero eigenvalues of Q reveal community structure

v

v

9Cattuto, Baldassarri, Servedio, Loreto: Emergent Community Structure in Social Tagging Systems, Adv.Phys. 2007
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Results of community formation in del.icio.us '°

0.08
0.08
0.0

0.0z

-0.02
-0.04
-0.08
-0.08

—0.1

@ Component values of the first three non-trivial eigenvectors
@ Each point corresponds to an eigenvector component

@ Coordinates are component values

@ Clusters are visible

1OCattuto, Baldassarri, Servedio, Loreto: Emergent Community Structure in Social Tagging Systems, Adv.Phys. 2007
Evangelos Milios (Dalhousie Univ.) MoMiNIS July 20, 2008 21/25



Reordered similarity matrix and tag clouds
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Reordered similarity matrix and tag clouds
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Challenges in community detection

@ Clustering users
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Challenges in community detection

@ Clustering users
@ Take into account

» friendship links
» bookmarks / tags in common
» similar bookmark / tag sets

DALHOUSIE
UNIVERSITY
Inspiring Minds
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Challenges in community detection

@ Clustering users
@ Take into account

» friendship links
» bookmarks / tags in common
» similar bookmark / tag sets

@ Need for modeling such networks

» To further our understanding of their properties
» To generate synthetic data sets for testing clustering algorithms

Evangelos Milios (Dalhousie Univ.) MoMiNIS July 20, 2008
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Challenges in Search '

@ Content-based challenges
» Short lifespan of content
» Locality of interest
» Vulnerability to spam

DALHOUSIE
UNIVERSITY
s

Inspiring Min

11Cho, Tomkins: Social Media and Search, IEEE Computer, Nov/Dec 2007
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Challenges in Search '

@ Content-based challenges
» Short lifespan of content
» Locality of interest
» Vulnerability to spam

@ System challenges

» Access control
» Distributed content (P2P)

11Cho, Tomkins: Social Media and Search, IEEE Computer, Nov/Dec 2007
Evangelos Milios (Dalhousie Univ.) MoMiNIS
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Challenges: capturing emergent semantics '3

@ Hierarchies of tags
@ Lightweight Ontology learning

DALHOUSIE
UNIVERSITY

12Mika: Social Networks and the SemanticWeb, Springer, 2007, ch. 4 Inspiring Minds
13Mika: Social Networks and the Semantic Web, Springer, 2007, ch. 9
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Challenges: capturing emergent semantics '3

@ Hierarchies of tags
@ Lightweight Ontology learning

What is a lightweight ontology? 2
An ontology is a...

lightweight ontology
(RDF(S), OWL Lite)

set of terms semantic FOL and beyond

network folksonomy heavyweight ontology

‘OWL DL, Full, rules
glossary l thesaurus ¢ )

11%21

‘ complexity ——

| with automated reasoning

12Mika: Social Networks and the SemanticWeb, Springer, 2007, ch. 4
13Mika: Social Networks and the Semantic Web, Springer, 2007, ch. 9
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