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Dalhousie U. Facts
• Founded in 1818
• The smallest Medical/Doctoral university in Canada

– Medical school
– Law school
– Engineering
– Business school

• World class
– Oceanography
– Biology
– Medicine
– Sciences

• Regional Research Hub for Atlantic Canada



Outline

Social Networks
Networked Information Spaces (e.g. Citation graphs, Web graph)
Social resource sharing and tagging systems
Search
Community formation
Dynamics / growth
Knowledge mining
Challenges
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Online Social Networks

Online communities originally supported by
I email (’70s)
I mailing lists (’80s)
I newsgroups (’80s)
I blogs (early ’00s)
I wikis (early ’00s)

Contemporary online social networking services (mid ’00s)
I purpose is linking people

(linkedin, facebook)
I purpose is to share resources,

linking people is an extra
(flickr, del.ic.ious, yahoo!360, myspace)
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Networked Information Spaces

Resources (Documents)
Explicit links between resources
Organically grown by a distributed community of contributors
working independently
Examples

I Citation graph of research / patent literature
I Gopher
I World Wide Web
I Common Law
I Peer-to-peer information networks
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Structure of Networked Information Spaces

Small world graphs
I Short diameter
I Small degree of separation (average distance between any two

nodes)

Power-law degree distributions (scale-free)
“Strongly” connected (hard to break up by removing nodes)
A tightly connected core plus small components

Evangelos Milios (Dalhousie Univ.) MoMiNIS July 20, 2008 5 / 25



The bowtie model of the Web 1

1
Broder, Kumar, Maghoul, Raghavan, Rajagopalan, Stata, Tomkins, Wiener: Graph structure in the web, WWW-9, 1999
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A model for the citation graph 2

2
An, Janssen, Milios: Characterizing and Mining the Citation Graph of Computer Science, Knowledge and Information

Systems, 2004
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Power laws in the citation graph
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Citation graph is hard to break up
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Dynamics of citation networks 3

Densification:
I Average degree increases over time
I according to a power law, e(t) ∝ n(t)a,

e(t), n(t) number of edges/nodes at time t

Shrinking diameter as network grows
Experimental data from

I arXiv citation graph
I patent citation graph
I autonomous network graph
I affiliation graphs (bipartite author/paper graphs)

3
Leskovec, Kleinberg, Faloutsos: Graphs over Time: Densification Laws, Shrinking Diameters and Possible Explanations,

KDD 2005
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Dynamics of social networks 4

Density

Structure
I Giant component
I Isolated star-shaped communities
I Singletons

Experimental data from Flickr, Yahoo 360!

4
Kumar, Novak, Tomkins: Structure and Evolution of Online Social Networks, KDD 2006
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Modelling Evolution by Biased Preferential
Attachment5

Three types of users (user added at each timestep)
I Passive (no activity)
I Inviters (pull together an off-line community)
I Linkers (full participants)

Edges are added at each timestep
I Source chosen at random from inviters/linkers with probability equal

to degree (preferential attachment)
I If source is inviter, a new node is created as destination
I if source is a linker, an existing node is chosen by preferential

attachment from inviters/linkers

5
Kumar, Novak, Tomkins: Structure and Evolution of Online Social Networks, KDD 2006
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Social resource sharing and tagging systems

On a social bookmarking and tagging system, users:
I store resources (bookmarks, photos, music, video, publications,

etc.)
I tag them with keywords
I establish one-directional friendship/contact links to other users

Tripartite (hyper)graph structure:

Tag assignment: (u, t , r), where u: user, t : tag, r : resource 6

6
Hotho, Jäschke, Schmitz, Stumme: Trend Detection in Folksonomies, SAMT 2006
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Modelling and Mining social resource sharing and
tagging systems

Navigation
Search and ranking
Hypergraph structure
Relation between friendship/contact links and resource/tag
similarities
Communities of users
Taxonomies of tag concepts / topics (folksonomies)
Trend detection, evolution, dynamics
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Ranking: The FolkRank algorithm 7

Adapted PageRank:
I Transform tripartite hypergraph into an undirected, weighted

tripartite graph
I Mutual reinforcement: Important resources tagged with important

tags by important users

I Random surfer model for setting weight vector ~w as a fixed point of
iteration ~w : ~w ← dA~w + (1− d)~p, where A is the row-normalized
adjacency matrix of graph, ~p is a personalization or topic-specific
bias, and ‖~w‖ = ‖~p‖.

I For no bias, ~p = (1, 1, ..., 1)T

FolkRank
I Compute ~w0 as fixed point with d = 1
I Compute ~w1 as fixed point with d < 1
I Final weight vector is ~w := ~w1 − ~w0

Additional Uses of (Adapted) PageRank and FolkRank
I Trend detection (how weights change for specific topics)
I Community detection (influential users for specific topics)
I Summarization

7
Hotho, Jäschke, Schmitz, Stumme: FolkRank: A Ranking Algorithm for Folksonomies, FGIR 2006
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Hotho, Jäschke, Schmitz, Stumme: FolkRank: A Ranking Algorithm for Folksonomies, FGIR 2006

Evangelos Milios (Dalhousie Univ.) MoMiNIS July 20, 2008 15 / 25



Ranking: The FolkRank algorithm 7

Adapted PageRank:
I Transform tripartite hypergraph into an undirected, weighted

tripartite graph
I Mutual reinforcement: Important resources tagged with important

tags by important users
I Random surfer model for setting weight vector ~w as a fixed point of

iteration ~w : ~w ← dA~w + (1− d)~p, where A is the row-normalized
adjacency matrix of graph, ~p is a personalization or topic-specific
bias, and ‖~w‖ = ‖~p‖.

I For no bias, ~p = (1, 1, ..., 1)T

FolkRank
I Compute ~w0 as fixed point with d = 1
I Compute ~w1 as fixed point with d < 1
I Final weight vector is ~w := ~w1 − ~w0

Additional Uses of (Adapted) PageRank and FolkRank
I Trend detection (how weights change for specific topics)
I Community detection (influential users for specific topics)
I Summarization

7
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Tag co-occurrence graphs 8

Vertices are tags
Two tags are linked by an edge if a user has used them both on a
resource

Strength of an edge, w(i , j): number of tag assignments the two
tags appear together
Strength of a vertex si : sum of the strength of its incident edges
Average nearest neighbour strength Snn(i): sum of the strengths
of neighbour vertices of vertex i
Statistics of interest

I Cumulative probability distribution of vertex strength
I Scatter plot of si versus Snn(i)

8
Cattuto, Schmitz, Baldassarri, Servedio, Loreto, Hotho, Grahl, Stumme: Network Properties of Folksonomies, AI Comm.

2007
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Tag spam detection

Spikes reveal spamming behaviour
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Relation of a vertex strength to that of its neighbours

Positive correlation for small strengths (assortative)
Negative correlation for large strengths (disassortative)
Spamming behaviour stands out from the main trend
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User-centred properties of the del.icio.us network

We study the relation between friendship and similarity of
bookmarks and tags

Study is centered on relations between users
I friendship graphs
I graphs based on common bookmarks / tags
I graphs based on similarity of bookmarks / tags

Questions:
I Do friends share common interests?
I Are tags user specific or generally meaningful?
I What are the density properties of similarity graphs?

More discussion later today.
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Resource-centred community formation in
del.icio.us 9

Each resource is characterized by a tag cloud from the community
of users
Two resources are similar if their tag clouds overlap (TF-IDF
weights)
Form similarity matrix W
Raise similarities to a small power γ = 0.1 to reduce dynamic
range
Rearrange rows and columns to visually identify community
structure

I Form matrix Ŵi,j = (1− δi,j)Wi,j
I Form matrix Si,j = δi,j

∑
j Ŵi,j

I Form matrix Q = S − Ŵ
I Lowest non-zero eigenvalues of Q reveal community structure

9
Cattuto, Baldassarri, Servedio, Loreto: Emergent Community Structure in Social Tagging Systems, Adv.Phys. 2007
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Results of community formation in del.icio.us 10

Component values of the first three non-trivial eigenvectors
Each point corresponds to an eigenvector component
Coordinates are component values
Clusters are visible

10
Cattuto, Baldassarri, Servedio, Loreto: Emergent Community Structure in Social Tagging Systems, Adv.Phys. 2007
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Reordered similarity matrix and tag clouds
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Reordered similarity matrix and tag clouds
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Challenges in community detection

Clustering users

Take into account
I friendship links
I bookmarks / tags in common
I similar bookmark / tag sets

Need for modeling such networks
I To further our understanding of their properties
I To generate synthetic data sets for testing clustering algorithms
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Challenges in Search 11

Content-based challenges
I Short lifespan of content
I Locality of interest
I Vulnerability to spam

System challenges
I Access control
I Distributed content (P2P)

11
Cho, Tomkins: Social Media and Search, IEEE Computer, Nov/Dec 2007
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Challenges: capturing emergent semantics 13

Hierarchies of tags
Lightweight Ontology learning

What is a lightweight ontology? 12

12
Mika: Social Networks and the SemanticWeb, Springer, 2007, ch. 4

13
Mika: Social Networks and the Semantic Web, Springer, 2007, ch. 9
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