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Bird’s eye view of Halifax



Halifax Fun



Halifax, Nova Scotia

• Northernmost harbour that does not freeze 
in the winter

• Relatively mild climate
• Metropolis of Atlantic Canada (incl. Nova 

Scotia, New Brunswick, Prince Edward 
Island, and Newfoundland)

• Regional economic, cultural and research 
hub

• Settled by Europeans in the 18th century



Dalhousie U. Facts
• Founded in 1818
• The smallest Medical/Doctoral university in Canada

– Medical school
– Law school
– Engineering
– Business school

• World class
– Oceanography
– Biology
– Medicine
– Sciences

• Regional Research Hub for Atlantic Canada



Faculty of Computer Science







Faculty of Computer Science
• Established in 1997
• Strengths in:

– Information retrieval, text mining
– Health informatics & Knowledge management
– Bioinformatics
– Human-computer interaction
– Computer networks, network management, 

intrusion detection
– Algorithms, graph theory, parallel computation



Interdisciplinary outlook
• Master’s degrees in:

– Computer Science
– Health informatics (with Medicine)
– Electronic commerce (with Business and Law)
– Bioinformatics (with Biology)

• Joint research projects with
– Mathematics
– Engineering
– Medicine
– Business
– Biology



Research Profile of the Faculty



Research snippets



Networked Information 
Spaces:

Modelling
and 

Mining



Documents are networked into 
information spaces

• World Wide Web
• Blog space
• Scientific and Medical Literature
• Patents
• Common Law



Desktop of the future



Peer-to-Peer Document Management
V. Keselj, E. Milios, S. Abidi



Automatic Topic Extraction
E. Milios



Experience Management
E. Milios, N. Zincir-Heywood
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Network Traffic Classification
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The Graphics and Visualization Lab 

• The focus is on both: 
– the development of new graphical techniques, and 
– the application of those techniques, often in cross-

disciplinary areas

• Our lab incorporates expertise in                               
areas such as: 
– image processing
– 3D computer graphics
– physically-based rendering
– visualization 
– and, traditional art



Graduate Courses & Faculty Members

• Visualization (6406) 
– focuses on graphical techniques for data 

visualization that assist in the extraction of 
meaning from datasets

• Advanced Computer Graphics (6604) 
– covers topics in computer graphics, 

including rendering, geometric modeling, 
and computer animation 

• Digital Image Processing (6602) 
– covers topics in digital picture processing 

such as visual perception, digitization, 
compression and enhancement 
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Outline

Social bookmarking and collaborative tagging
Friendship, common entity and similarity graphs
k-core analysis
Bookmark and tag distributions
Friendships and bookmark/tag similarities
Density properties
Discussion
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Social bookmarking and collaborative tagging systems

On a system like del.icio.us, users:
I store their personal bookmarks
I tag them with keywords
I establish one-directional friendship links to other users

We study the relation between friendship and similarity of
bookmarks and tags
Study is centered on relations between users

I friendship graphs
I graphs based on common bookmarks / tags
I graphs based on similarity of bookmarks / tags

Questions:
I Do friends share common interests?
I Are tags user specific or generally meaningful?
I What are the density properties of similarity graphs?
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Motivation

Clustering users in social bookmarking and collaborative tagging
systems

Take into account
I friendship links
I bookmarks / tags in common
I similar bookmark / tag sets

Need for modeling such networks
I To further our understanding of their properties
I To generate synthetic data sets for testing clustering algorithms
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Previous Work

Evolution Models of Flickr and Yahoo!360 (Kumar 2006)
Search and ranking for social networks (Hotho 2006)
Analysis of online social networks (Ahn 2007)
Tagging distributions (small set of stable tags, long tail of
idiosyncratic tags) (Golder 2005)
Tag co-occurrence network detects tag spamming (Schmitz 2007)
Social networks and the semantic web (Mika 2007)
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Friendship graph

Vertices are users

Edges are directed friendship links between users
We obtain undirected friendship graph by ignoring direction
Bidirectional edges representing mutual friendship are included
once
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Common Entity Graphs

Graphs implicitly defined by number of entities users have in
common

Symmetric similarity metric
Range from 0 to the maximum number of entities.
Only entities having over a certain user frequency (5) are
considered
Two types of graphs:

I Common bookmark graph (entities are bookmarks)
I Common tag graph (entities are tags)
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Similarity graphs

Vertices connected by undirected weighted edge that reflects the
cosine similarity between the entity vectors of the corresponding
users

Vector space defined by the set of entities over the entire system
Only entities having over a certain user frequency (5) are included
in the vector space
There is no equivalent of “stop words” in bookmarks or tags
Two types

I Bookmark similarity graph. Weights are binary
I Tag similarity graph. Weights are tf-idf scores for the tags.

Both common entity graphs and similarity graphs are converted to
binary graphs by removing all edges with weight below such a
threshold that one million edges are kept.
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k-cores

Degree core of order k is
the subgraph generated
by recursively removing
all nodes of degree less
than k
Here the 0− core is the
full graph
It includes isolated
vertices
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k-cores

Degree core of order k is
the subgraph generated
by recursively removing
all nodes of degree less
than k
Here the 1− core is the
full graph with isolated
vertices pruned
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k-cores

Degree core of order k is
the subgraph generated
by recursively removing
all nodes of degree less
than k
Here the 2− core prunes
all tree structures
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k-cores

Degree core of order k is
the subgraph generated
by recursively removing
all nodes of degree less
than k
Here is the 3− core
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k-cores

Degree core of order k is
the subgraph generated
by recursively removing
all nodes of degree less
than k
The 4− core is the same
as the 3-core.
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Density properties

Clustering coefficient
I for a vertex: number of actual edges between neighbours of a

vertex as a fraction of the total potential number.
I for a graph: average over all vertices (of degree > 1)

K-core analysis
I We produce a sequence of k-core graphs, with increasing k
I We plot properties of these graphs as a function of k

F diameter of largest component
F size of largest component
F average distance between vertex pairs
F clustering coefficient
F number of components
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Density properties

Scatter plots of the average clustering coefficient of the vertices
of:

I the same degree in the original graph versus degree
I the largest component in the k-core sequence of graphs versus k
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Exploration of our data set
Data set based on a Breadth first search of the friendship graph,
starting with the user with the most friends as seed

13, 514 users
4, 574, 587 bookmarks
47, 807 friendship connections
6, 876 of friendships are mutual
643, 889 tags in total

Counts (in K) urls url do-
mains

Tags Wikipedia
words

Total number of
unique terms

4,575 1,106 644 4,098

Terms used more
than once

1,017 483 303 1,978

Terms used only
once

3,558 623 341 2,120
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Zipf distributions for bookmarks and tags
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Relating friendship with bookmark and tag similarity

pair average over→ Friends Non-friends
k-common bookmarks 1.931 0.372
bookmark cosine sim 0.011 0.004
k-common tags 54.157 41.816
tag cosine sim 0.081 0.085

Compare friend and non-friend pairs

Friends have stronger connections over bookmarks
Friends have similar connections over tags as non-tags
Conjecture: most tags are individualized, pertaining to the
particular ways a person organizes their bookmarks
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Density properties of common bookmark graphs
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Density properties of common tag graphs
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Density properties of bookmark similarity graphs
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Density properties of tag similarity graphs
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Observations

Low-degree vertices are dropped first as k increases
Such vertices have high clustering coefficients, hence
average clustering coefficient drops
As k keeps increasing, densification process prevails
average clustering coefficient increases
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Density properties of friendship graph
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Low degree vertices have high clustering coefficients, i.e.
friends of users with few friends are friends themselves
friends of users with large degrees are generally not connected
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How do plots look from random graphs with power-law
degree distribution?

Constant!

The fact that two vertices are friends of a third vertex does not
affect the probability of them being linked
U-shaped curve of clustering coefficient vs k not consistent with
binomial random graphs or random graphs with a power law
degree distribution
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Largest component of common bookmark graph
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Average distance between pairs of vertices
Size as a function of k
Size is close to k , hence close to a clique
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Summary

Friendship correlates well with common / similar bookmarks but
not for tags

Majority of tags are user-specific tags
Tags behave like words in text more than bookmarks
No equivalent of stop words for tags or bookmarks
Graphs deviate from power-law behaviour
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