Characterizing a social bookmarking and tagging network

Evangelos Milios

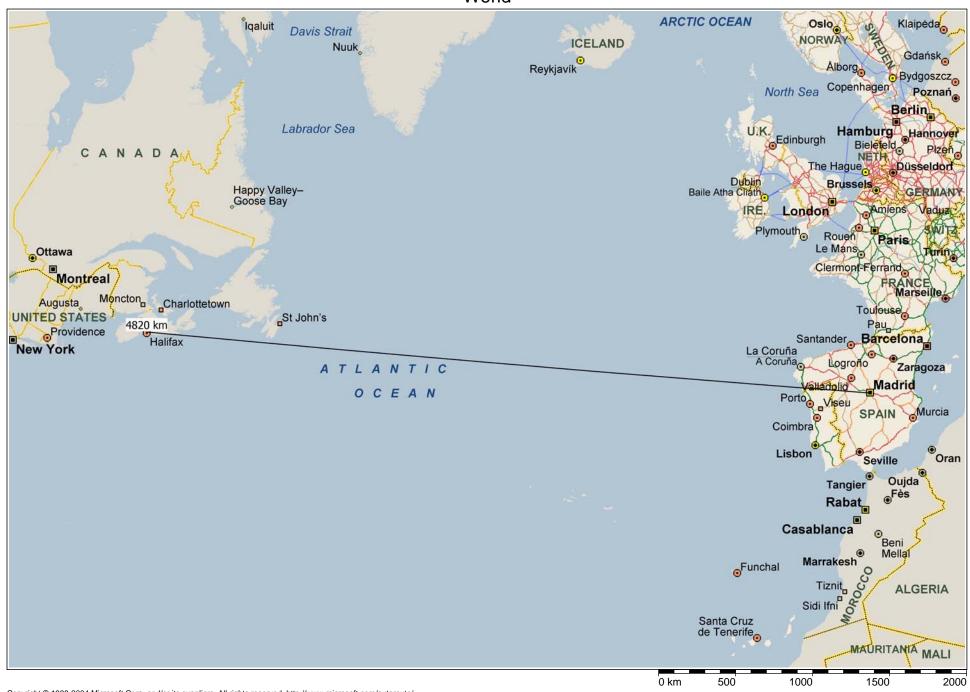
Dalhousie Univ., Faculty of Computer Science

Joint research with Ralitsa Angelova¹ Marek Lipczak², Paweł Prałat²

1 Max Planck Institut für Informatik, Saarbrücken, Germany

²Dalhousie University

World



Bird's eye view of Halifax

Halifax Fun

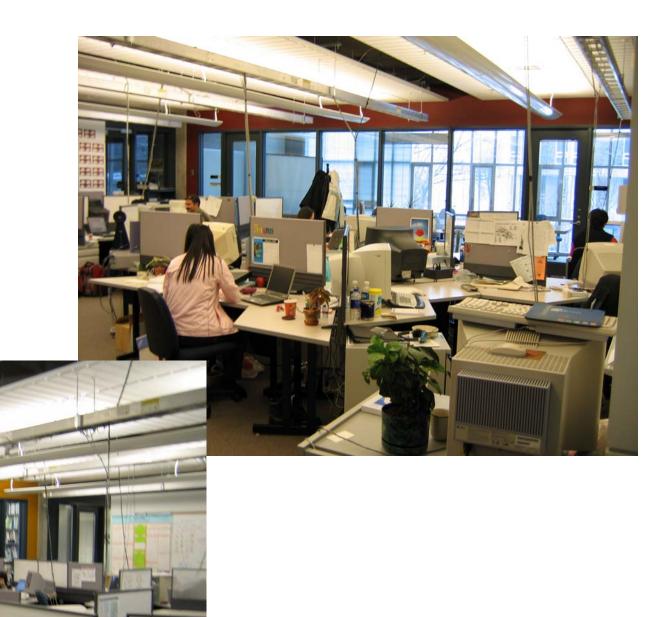
Halifax, Nova Scotia

- Northernmost harbour that does not freeze in the winter
- Relatively mild climate
- Metropolis of Atlantic Canada (incl. Nova Scotia, New Brunswick, Prince Edward Island, and Newfoundland)
- Regional economic, cultural and research hub
- Settled by Europeans in the 18th century

Dalhousie U. Facts

- Founded in 1818
- The smallest Medical/Doctoral university in Canada
 - Medical school
 - Law school
 - Engineering
 - Business school
- World class
 - Oceanography
 - Biology
 - Medicine
 - Sciences
- Regional Research Hub for Atlantic Canada

Faculty of Computer Science



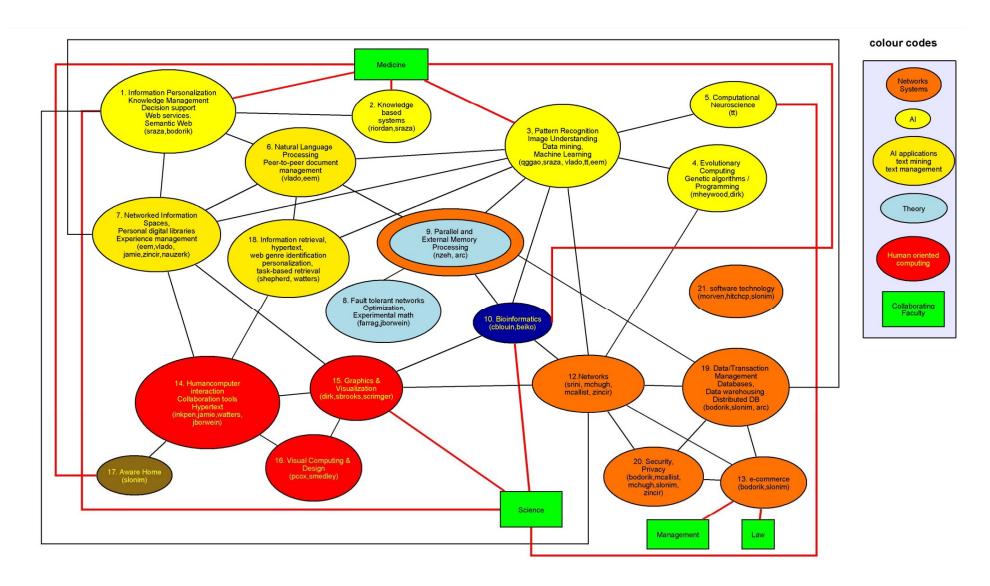
Faculty of Computer Science

- Established in 1997
- Strengths in:
 - Information retrieval, text mining
 - Health informatics & Knowledge management
 - Bioinformatics
 - Human-computer interaction
 - Computer networks, network management, intrusion detection
 - Algorithms, graph theory, parallel computation

Interdisciplinary outlook

- Master's degrees in:
 - Computer Science
 - Health informatics (with Medicine)
 - Electronic commerce (with Business and Law)
 - Bioinformatics (with Biology)
- Joint research projects with
 - Mathematics
 - Engineering
 - Medicine
 - Business
 - Biology

Research Profile of the Faculty



Research snippets

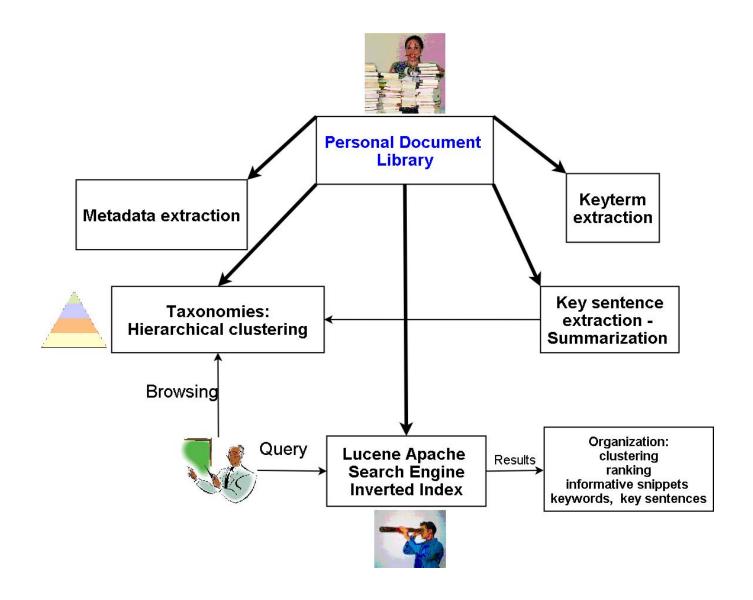
Networked Information Spaces:

Modelling and Mining

Documents are networked into information spaces

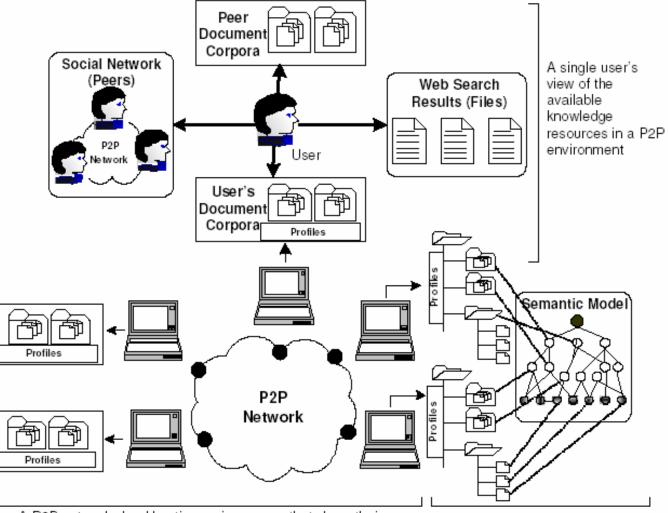
- World Wide Web
- Blog space
- Scientific and Medical Literature
- Patents
- Common Law

Desktop of the future



Peer-to-Peer Document Management

V. Keselj, E. Milios, S. Abidi



A P2P network cloud hosting various users that share their knowledge resources. Each user has a set of profiles and document corpora

User's document corpora linked to an organizational semantic model

Automatic Topic Extraction

E. Milios

topic 1	topic 2	topic 3	topic 4	topic 5	topic 6	topie 7	topic 8	topic 9
error	neuron	image	analog	data	control	function	rule	distribution
generalization	neurons	images	circuit	clustering	model	functions	rules	probability
learning	synaptic	object	current	principal	motor	basis	set	gaussian
training	firing	recognition	figure	cluster	forward	linear	step	data
optimal	spike	face	chip	pea	inverse	regression	form	parameters
order	time	objects	voltage	set	dynamics	kernel	fuzzy	model
large	activity	hand	vlsi	algorithm	controller	space	problem	bayesian
average	rate	pixel	circuits	points	feedback	gaussian	relative	mixture
small	synapses	system	digital	approach	system	approximation	extraction	density
examples	potential	view	implementation	clusters	position	rbf	expert	likelihood

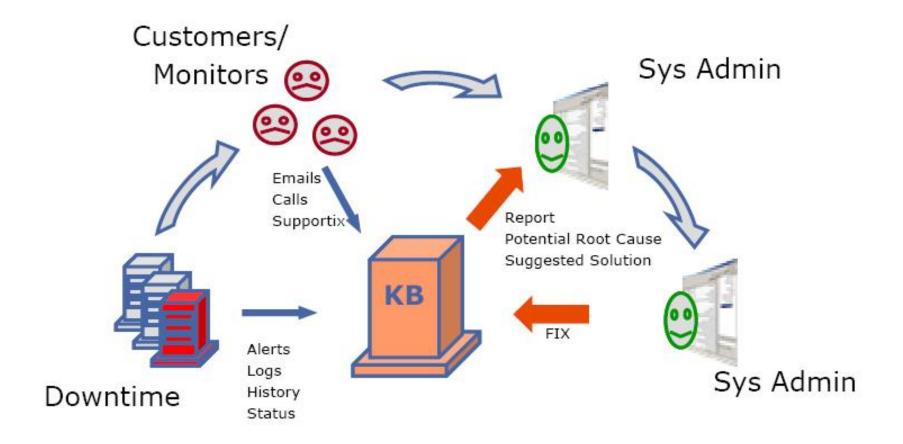
Figure 2. I	Example	word-topics	for the	NIPS	dataset
-------------	---------	-------------	---------	------	---------

topic 1	topic 2	topic 3	topic 4	topic 5	topic 6	topic 7	topic 8	topic 9	topic 10
language	game	church	house	air	league	war	apollo	party	system
english	player	god	parliament	aircraft	football	german	earth	government	computer
greek	cards	christian	members	world	team	army	moon	president	game
languages	players	jesus	commons	force	world	soviet	lunar	political	games
word	games	christ	lords	military	club	battle	time	national	apple
russell	play	orthodox	bill	ship	home	germany	mission	minister	atari
century	card	baptism	act	gun	season	world	program	states	commodore
theory	hand	life	power	war	won	forces	module	united	home
words	round	catholic	chopin	ships	game	french	jpg	election	software
modern	played	roman	speaker	navy	major	union	crew	state	video

Figure 3. Example word-topics for the Wikipedia dataset

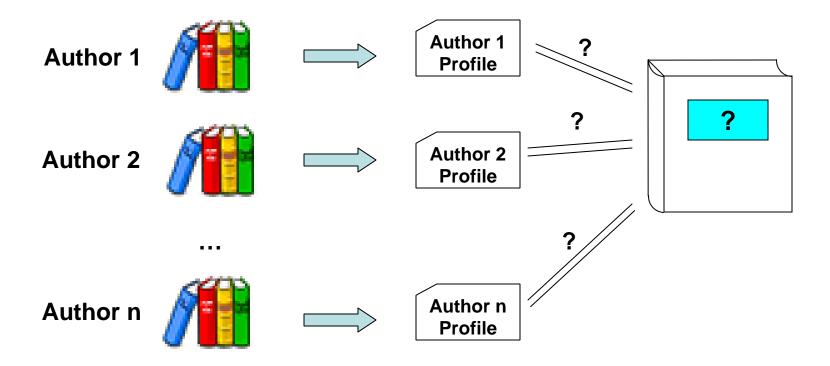
Experience Management

E. Milios, N. Zincir-Heywood



Authorship Attribution using Character N-grams

Vlado Keselj

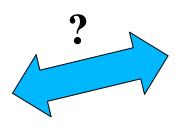


Dickens: A Tale of Two Cities

Dickens: Christmas Carol

_th	0.015
	0.013
the	0.013
he_	0.011
and	0.007





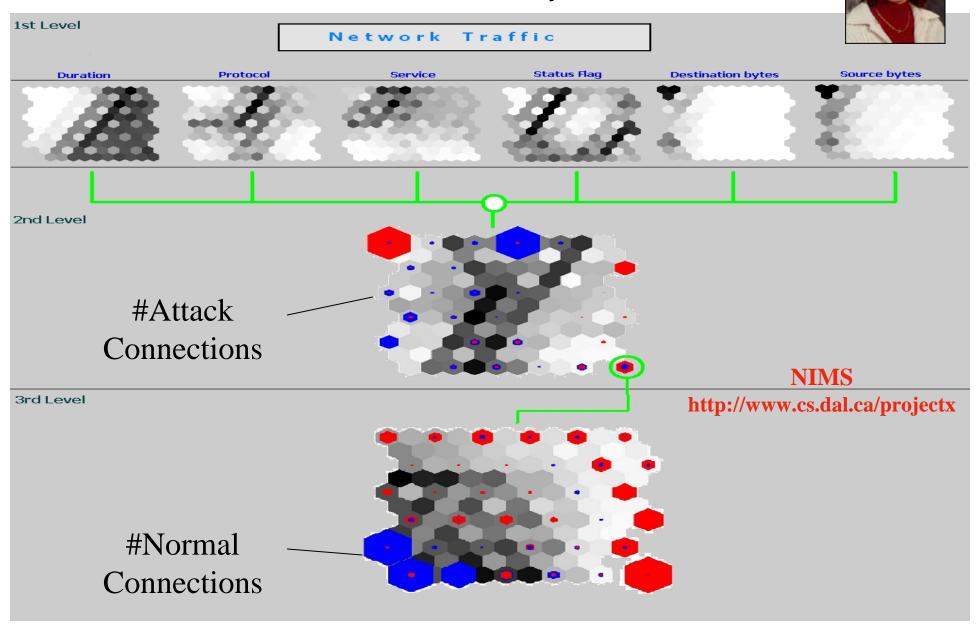
_th 0.016
the 0.014
he_ 0.012
and 0.007
nd_ 0.007

Carroll: Alice's adventures in wonderland

_th 0.017
____ 0.017
the 0.014
he_ 0.014
ing 0.007

Network Traffic Classification

Nur Zincir-Heywood



The Graphics and Visualization Lab

- The focus is on both:
 - the development of new graphical techniques, and
 - the application of those techniques, often in crossdisciplinary areas
- Our lab incorporates expertise in areas such as:
 - image processing
 - 3D computer graphics
 - physically-based rendering
 - visualization
 - and, traditional art

Graduate Courses & Faculty Members

- Visualization (6406)
 - focuses on graphical techniques for data visualization that assist in the extraction of meaning from datasets
- Advanced Computer Graphics (6604)
 - covers topics in computer graphics, including rendering, geometric modeling, and computer animation
- Digital Image Processing (6602)
 - covers topics in digital picture processing such as visual perception, digitization, compression and enhancement

Characterizing a social bookmarking and tagging network

Evangelos Milios

Dalhousie Univ., Faculty of Computer Science

Joint research with Ralitsa Angelova¹ Marek Lipczak², Paweł Prałat²

¹ Max Planck Institut für Informatik, Saarbrücken, Germany

²Dalhousie University

Outline

- Social bookmarking and collaborative tagging
- Friendship, common entity and similarity graphs
- k-core analysis
- Bookmark and tag distributions
- Friendships and bookmark/tag similarities
- Density properties
- Discussion

- On a system like del.icio.us, users:
 - store their personal bookmarks
 - tag them with keywords
 - establish one-directional friendship links to other users

- On a system like del.icio.us, users:
 - store their personal bookmarks
 - tag them with keywords
 - establish one-directional friendship links to other users
- We study the relation between friendship and similarity of bookmarks and tags

- On a system like del.icio.us, users:
 - store their personal bookmarks
 - tag them with keywords
 - establish one-directional friendship links to other users
- We study the relation between friendship and similarity of bookmarks and tags
- Study is centered on relations between users
 - friendship graphs
 - graphs based on common bookmarks / tags
 - graphs based on similarity of bookmarks / tags

- On a system like del.icio.us, users:
 - store their personal bookmarks
 - tag them with keywords
 - establish one-directional friendship links to other users
- We study the relation between friendship and similarity of bookmarks and tags
- Study is centered on relations between users
 - friendship graphs
 - graphs based on common bookmarks / tags
 - graphs based on similarity of bookmarks / tags
- Questions:
 - Do friends share common interests?
 - Are tags user specific or generally meaningful?
 - What are the density properties of similarity graphs?

Motivation

 Clustering users in social bookmarking and collaborative tagging systems

Motivation

- Clustering users in social bookmarking and collaborative tagging systems
- Take into account
 - friendship links
 - bookmarks / tags in common
 - similar bookmark / tag sets

Motivation

- Clustering users in social bookmarking and collaborative tagging systems
- Take into account
 - friendship links
 - bookmarks / tags in common
 - similar bookmark / tag sets
- Need for modeling such networks
 - To further our understanding of their properties
 - To generate synthetic data sets for testing clustering algorithms

Previous Work

- Evolution Models of Flickr and Yahoo!360 (Kumar 2006)
- Search and ranking for social networks (Hotho 2006)
- Analysis of online social networks (Ahn 2007)
- Tagging distributions (small set of stable tags, long tail of idiosyncratic tags) (Golder 2005)
- Tag co-occurrence network detects tag spamming (Schmitz 2007)
- Social networks and the semantic web (Mika 2007)

Friendship graph

Vertices are users

Friendship graph

- Vertices are users
- Edges are directed friendship links between users

Friendship graph

- Vertices are users
- Edges are directed friendship links between users
- We obtain undirected friendship graph by ignoring direction

Friendship graph

- Vertices are users
- Edges are directed friendship links between users
- We obtain undirected friendship graph by ignoring direction
- Bidirectional edges representing mutual friendship are included once

Graphs implicitly defined by number of entities users have in common

- Graphs implicitly defined by number of entities users have in common
- Symmetric similarity metric
- Range from 0 to the maximum number of entities.

- Graphs implicitly defined by number of entities users have in common
- Symmetric similarity metric
- Range from 0 to the maximum number of entities.
- Only entities having over a certain user frequency (5) are considered

- Graphs implicitly defined by number of entities users have in common
- Symmetric similarity metric
- Range from 0 to the maximum number of entities.
- Only entities having over a certain user frequency (5) are considered
- Two types of graphs:
 - Common bookmark graph (entities are bookmarks)
 - Common tag graph (entities are tags)

 Vertices connected by undirected weighted edge that reflects the cosine similarity between the entity vectors of the corresponding users

- Vertices connected by undirected weighted edge that reflects the cosine similarity between the entity vectors of the corresponding users
- Vector space defined by the set of entities over the entire system
- Only entities having over a certain user frequency (5) are included in the vector space

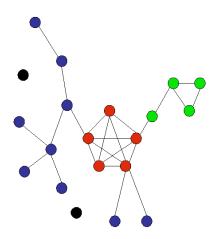
- Vertices connected by undirected weighted edge that reflects the cosine similarity between the entity vectors of the corresponding users
- Vector space defined by the set of entities over the entire system
- Only entities having over a certain user frequency (5) are included in the vector space
- There is no equivalent of "stop words" in bookmarks or tags

- Vertices connected by undirected weighted edge that reflects the cosine similarity between the entity vectors of the corresponding users
- Vector space defined by the set of entities over the entire system
- Only entities having over a certain user frequency (5) are included in the vector space
- There is no equivalent of "stop words" in bookmarks or tags
- Two types
 - Bookmark similarity graph. Weights are binary

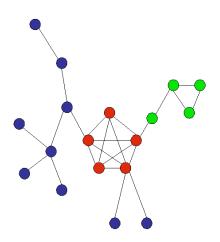
- Vertices connected by undirected weighted edge that reflects the cosine similarity between the entity vectors of the corresponding users
- Vector space defined by the set of entities over the entire system
- Only entities having over a certain user frequency (5) are included in the vector space
- There is no equivalent of "stop words" in bookmarks or tags
- Two types
 - Bookmark similarity graph. Weights are binary
 - ► Tag similarity graph. Weights are tf-idf scores for the tags.

- Vertices connected by undirected weighted edge that reflects the cosine similarity between the entity vectors of the corresponding users
- Vector space defined by the set of entities over the entire system
- Only entities having over a certain user frequency (5) are included in the vector space
- There is no equivalent of "stop words" in bookmarks or tags
- Two types
 - Bookmark similarity graph. Weights are binary
 - Tag similarity graph. Weights are tf-idf scores for the tags.
- Both common entity graphs and similarity graphs are converted to binary graphs by removing all edges with weight below such a threshold that one million edges are kept.

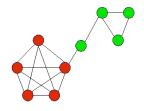
- Degree core of order k is the subgraph generated by recursively removing all nodes of degree less than k
- Here the 0 core is the full graph
- It includes isolated vertices



- Degree core of order k is the subgraph generated by recursively removing all nodes of degree less than k
- Here the 1 core is the full graph with isolated vertices pruned



- Degree core of order k is the subgraph generated by recursively removing all nodes of degree less than k
- Here the 2 core prunes all tree structures



- Degree core of order k is the subgraph generated by recursively removing all nodes of degree less than k
- Here is the 3 core

- Degree core of order k is the subgraph generated by recursively removing all nodes of degree less than k
- The 4 core is the same as the 3-core.

Density properties

- Clustering coefficient
 - for a vertex: number of actual edges between neighbours of a vertex as a fraction of the total potential number.
 - for a graph: average over all vertices (of degree > 1)

Density properties

- Clustering coefficient
 - for a vertex: number of actual edges between neighbours of a vertex as a fraction of the total potential number.
 - for a graph: average over all vertices (of degree > 1)
- K-core analysis
 - We produce a sequence of k-core graphs, with increasing k
 - We plot properties of these graphs as a function of k
 - diameter of largest component
 - size of largest component
 - average distance between vertex pairs
 - clustering coefficient
 - number of components

Density properties

- Scatter plots of the average clustering coefficient of the vertices of:
 - the same degree in the original graph versus degree
 - ▶ the largest component in the k-core sequence of graphs versus k

 Data set based on a Breadth first search of the friendship graph, starting with the user with the most friends as seed

- Data set based on a Breadth first search of the friendship graph, starting with the user with the most friends as seed
- 13,514 users

- Data set based on a Breadth first search of the friendship graph, starting with the user with the most friends as seed
- 13,514 users
- 4,574,587 bookmarks

- Data set based on a Breadth first search of the friendship graph, starting with the user with the most friends as seed
- 13,514 users
- 4,574,587 bookmarks
- 47,807 friendship connections

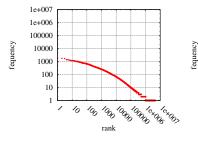
- Data set based on a Breadth first search of the friendship graph, starting with the user with the most friends as seed
- 13,514 users
- 4,574,587 bookmarks
- 47,807 friendship connections
- 6,876 of friendships are mutual

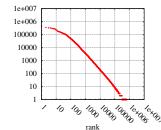
- Data set based on a Breadth first search of the friendship graph, starting with the user with the most friends as seed
- 13,514 users
- 4,574,587 bookmarks
- 47,807 friendship connections
- 6,876 of friendships are mutual
- 643,889 tags in total

- Data set based on a Breadth first search of the friendship graph. starting with the user with the most friends as seed
- 13,514 users
- 4,574,587 bookmarks
- 47,807 friendship connections
- 6,876 of friendships are mutual
- 643, 889 tags in total

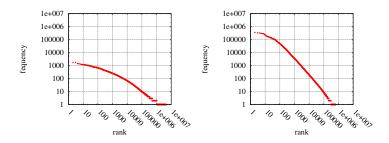
Counts (in K)	urls	url do- mains	Tags	Wikipedia words
Total number of unique terms	4,575	1,106	644	4,098
Terms used more than once	1,017	483	303	1,978
Terms used only once	3,558	623	341	2,120

Zipf distributions for bookmarks and tags





Zipf distributions for bookmarks and tags



- Tail is Zipf-like
- Head is flat (no "stop-word" behaviour)
- Large fraction appearing only once

pair average over \rightarrow	Friends	Non-friends
k-common bookmarks	1.931	0.372
bookmark cosine sim	0.011	0.004
k-common tags	54.157	41.816
tag cosine sim	0.081	0.085

Compare friend and non-friend pairs

pair average over \rightarrow	Friends	Non-friends
k-common bookmarks	1.931	0.372
bookmark cosine sim	0.011	0.004
k-common tags	54.157	41.816
tag cosine sim	0.081	0.085

- Compare friend and non-friend pairs
- Friends have stronger connections over bookmarks

pair average over \rightarrow	Friends	Non-friends
k-common bookmarks	1.931	0.372
bookmark cosine sim	0.011	0.004
k-common tags	54.157	41.816
tag cosine sim	0.081	0.085

- Compare friend and non-friend pairs
- Friends have stronger connections over bookmarks
- Friends have similar connections over tags as non-tags

pair average over $ ightarrow$	Friends	Non-friends
k-common bookmarks	1.931	0.372
bookmark cosine sim	0.011	0.004
k-common tags	54.157	41.816
tag cosine sim	0.081	0.085

- Compare friend and non-friend pairs
- Friends have stronger connections over bookmarks
- Friends have similar connections over tags as non-tags
- Conjecture: most tags are individualized, pertaining to the particular ways a person organizes their bookmarks

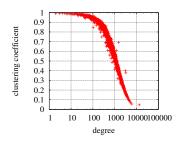
June 18, 2008

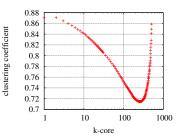
pair average over $ ightarrow$	Friends	Non-friends
k-common bookmarks	1.931	0.372
bookmark cosine sim	0.011	0.004
k-common tags	54.157	41.816
tag cosine sim	0.081	0.085

- Compare friend and non-friend pairs
- Friends have stronger connections over bookmarks
- Friends have similar connections over tags as non-tags
- Conjecture: most tags are individualized, pertaining to the particular ways a person organizes their bookmarks

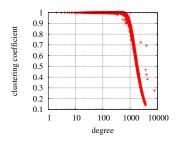
June 18, 2008

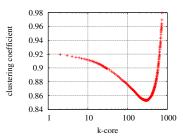
Density properties of common bookmark graphs



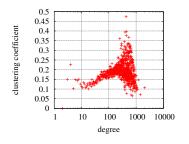


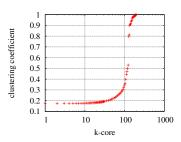
Density properties of common tag graphs



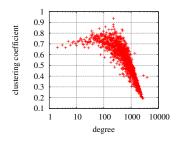


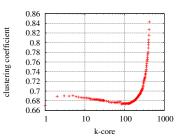
Density properties of bookmark similarity graphs





Density properties of tag similarity graphs

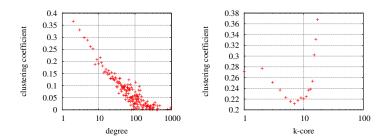




Observations

- Low-degree vertices are dropped first as k increases
- Such vertices have high clustering coefficients, hence
- average clustering coefficient drops
- As k keeps increasing, densification process prevails
- average clustering coefficient increases

Density properties of friendship graph



- Low degree vertices have high clustering coefficients, i.e.
- friends of users with few friends are friends themselves
- friends of users with large degrees are generally not connected

How do plots look from random graphs with power-law degree distribution?

Constant!

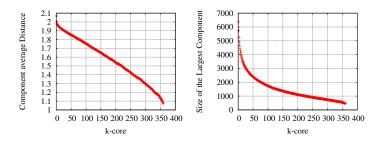
How do plots look from random graphs with power-law degree distribution?

- Constant!
- The fact that two vertices are friends of a third vertex does not affect the probability of them being linked

How do plots look from random graphs with power-law degree distribution?

- Constant!
- The fact that two vertices are friends of a third vertex does not affect the probability of them being linked
- U-shaped curve of clustering coefficient vs k not consistent with binomial random graphs or random graphs with a power law degree distribution

Largest component of common bookmark graph



- Average distance between pairs of vertices
- Size as a function of k
- Size is close to k, hence close to a clique

 Friendship correlates well with common / similar bookmarks but not for tags

- Friendship correlates well with common / similar bookmarks but not for tags
- Majority of tags are user-specific tags

- Friendship correlates well with common / similar bookmarks but not for tags
- Majority of tags are user-specific tags
- Tags behave like words in text more than bookmarks

- Friendship correlates well with common / similar bookmarks but not for tags
- Majority of tags are user-specific tags
- Tags behave like words in text more than bookmarks
- No equivalent of stop words for tags or bookmarks

- Friendship correlates well with common / similar bookmarks but not for tags
- Majority of tags are user-specific tags
- Tags behave like words in text more than bookmarks
- No equivalent of stop words for tags or bookmarks
- Graphs deviate from power-law behaviour

Computational Intelligence

Edited by ALI GHORBANI and EVANGELOS MILIOS

- Impact Factor: 1.415
- ISI Journal Citation Reports® Ranking:

2006: 29/85 (Computer Science, Artificial Intelligence)

Frequency: Bi-Monthly

FOCAL AREAS

- · Machine learning, incl.
 - · symbolic multi-strategy and cognitive learning
- · Web intelligence and semantic web
- Discovery science and knowledge mining
- Agents and multi-agent systems
- Modern knowledge-based systems
- Key application areas of AI
 - games, software engineering, e-commerce

