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Bird’s eye view of Halifax




Halifax Fun




Halifax, Nova Scotia

Northernmost harbour that does not freeze
INn the winter

Relatively mild climate

Metropolis of Atlantic Canada (incl. Nova
Scotia, New Brunswick, Prince Edward
sland, and Newfoundland)

Regional economic, cultural and research
nub

Settled by Europeans in the 18" century




Dalhousie U. Facts

Founded in 1818

The smallest Medical/Doctoral university in Canada
— Medical school
— Law school

— Engineering

— Business school
World class

— Oceanography
— Biology

— Medicine

— Sciences
Regional Research Hub for Atlantic Canada




Faculty of Computer Science










Faculty of Computer Science

e Established in 1997

o Strengths in:
— Information retrieval, text mining
— Health informatics & Knowledge management
— Biloinformatics
— Human-computer interaction

— Computer networks, network management,
Intrusion detection

— Algorithms, graph theory, parallel computation



Interdisciplinary outlook

 Master’s degrees In:
— Computer Science
— Health informatics (with Medicine)
— Electronic commerce (with Business and Law)
— Bioinformatics (with Biology)

 Joint research projects with
— Mathematics
— Engineering
— Medicine
— Business
— Biology



Research Profile of the F

aculty

1. Information Personalization
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Networked Information
Spaces:

Modelling
and
Mining



Documents are networked Into
iInformation spaces

World Wide Web

Blog space

Scientific and Medical Literature
Patents

Common Law



Desktop of the future
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Peer-to-Peer Document Management

V. Keselj, E. Milios, S. Abidi

Co rpura

- - ~
Social Network A single user's
(Peers) Web Search view of the
Results (Files) available
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U=zer's document corpora linked to
an organizational semantic maodel

A P2P network cloud hosting various users that share their
knowledge resources. Each user has a set of profiles and
document corpora



Automatic Topic Extraction

E. Milios

topic 1 topic 2 lopie 3 lopic 4 topic 3 topic 6 topie 7 topic 8 topic 9
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Figure 2. Example word-topics for the NIPS dataset
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Figure 3. Example word-topics for the Wikipedia dataset



Experience Management

E. Milios, N. Zincir-Heywood
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Authorship Attribution using

Character N-grams
Vlado Kesel
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Network Traffic Classification
Nur Zincir-Heywood
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The Graphics and Visualization Lab

 The focus is on both:
— the development of new graphical technigues, and

— the application of those techniques, often in cross-
disciplinary areas

e Our lab incorporates expertise In
areas such as:
— Image processing
— 3D computer graphics
— physically-based rendering
— visualization
— and, traditional art




Graduate Courses & Faculty Members

* Visualization (64006)

— focuses on graphical techniques for data
visualization that assist in the extraction of
meaning from datasets

* Advanced Computer Graphics (6604)

— covers topics in computer graphics,
iIncluding rendering, geometric modeling,
and computer animation

« Digital Image Processing (6602)

— covers topics in digital picture processing
such as visual perception, digitization,
compression and enhancement
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Outline

Social bookmarking and collaborative tagging
Friendship, common entity and similarity graphs
k-core analysis

Bookmark and tag distributions

Friendships and bookmark/tag similarities
Density properties

Discussion
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Social bookmarking and collaborative tagging systems

@ On a system like del.icio.us, users:
» store their personal bookmarks
» tag them with keywords
» establish one-directional friendship links to other users
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Social bookmarking and collaborative tagging systems

@ On a system like del.icio.us, users:
» store their personal bookmarks
» tag them with keywords
» establish one-directional friendship links to other users
@ We study the relation between friendship and similarity of
bookmarks and tags
@ Study is centered on relations between users
» friendship graphs
» graphs based on common bookmarks / tags
» graphs based on similarity of bookmarks / tags
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Social bookmarking and collaborative tagging systems

@ On a system like del.icio.us, users:
» store their personal bookmarks
» tag them with keywords
» establish one-directional friendship links to other users
@ We study the relation between friendship and similarity of
bookmarks and tags
@ Study is centered on relations between users
» friendship graphs
» graphs based on common bookmarks / tags
» graphs based on similarity of bookmarks / tags
@ Questions:
» Do friends share common interests?
» Are tags user specific or generally meaningful?
» What are the density properties of similarity graphs?
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Motivation

@ Clustering users in social bookmarking and collaborative tagging
systems
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Motivation
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@ Take into account

» friendship links
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» similar bookmark / tag sets

Evangelos Milios (Dalhousie Univ.) Social Bookmarking/Tagging Characterization June 18, 2008 4/28



Motivation

@ Clustering users in social bookmarking and collaborative tagging
systems
@ Take into account
» friendship links
» bookmarks / tags in common
» similar bookmark / tag sets
@ Need for modeling such networks

» To further our understanding of their properties
» To generate synthetic data sets for testing clustering algorithms
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Previous Work

@ Evolution Models of Flickr and Yahoo!360 (Kumar 2006)
@ Search and ranking for social networks (Hotho 2006)
@ Analysis of online social networks (Ahn 2007)

@ Tagging distributions (small set of stable tags, long tail of
idiosyncratic tags) (Golder 2005)

@ Tag co-occurrence network detects tag spamming (Schmitz 2007)
@ Social networks and the semantic web (Mika 2007)
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Friendship graph

@ \ertices are users
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Friendship graph

@ Vertices are users
@ Edges are directed friendship links between users

DALHOUSIE
UNIVERSITY

Inspiring Minds

Evangelos Milios (Dalhousie Univ.) Social Bookmarking/Tagging Characterization June 18, 2008 6/28



Friendship graph

@ Vertices are users
@ Edges are directed friendship links between users
@ We obtain undirected friendship graph by ignoring direction
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Friendship graph

@ Vertices are users
@ Edges are directed friendship links between users
@ We obtain undirected friendship graph by ignoring direction

@ Bidirectional edges representing mutual friendship are included
once
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Common Entity Graphs

@ Graphs implicitly defined by number of entities users have in
common
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Common Entity Graphs

@ Graphs implicitly defined by number of entities users have in
common

@ Symmetric similarity metric
@ Range from 0 to the maximum number of entities.

Evangelos Milios (Dalhousie Univ.) Social Bookmarking/Tagging Characterization June 18, 2008 7/28



Common Entity Graphs

@ Graphs implicitly defined by number of entities users have in
common

@ Symmetric similarity metric
@ Range from 0 to the maximum number of entities.

@ Only entities having over a certain user frequency (5) are
considered
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Common Entity Graphs

@ Graphs implicitly defined by number of entities users have in
common

@ Symmetric similarity metric
@ Range from 0 to the maximum number of entities.

@ Only entities having over a certain user frequency (5) are
considered

@ Two types of graphs:

» Common bookmark graph (entities are bookmarks)
» Common tag graph (entities are tags)
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Similarity graphs

@ \ertices connected by undirected weighted edge that reflects the
cosine similarity between the entity vectors of the corresponding
users
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Similarity graphs

@ \ertices connected by undirected weighted edge that reflects the
cosine similarity between the entity vectors of the corresponding
users

@ Vector space defined by the set of entities over the entire system

@ Only entities having over a certain user frequency (5) are included
in the vector space
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@ Vector space defined by the set of entities over the entire system
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@ There is no equivalent of “stop words” in bookmarks or tags
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@ Only entities having over a certain user frequency (5) are included
in the vector space
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Similarity graphs

@ \ertices connected by undirected weighted edge that reflects the
cosine similarity between the entity vectors of the corresponding
users

@ Vector space defined by the set of entities over the entire system

@ Only entities having over a certain user frequency (5) are included
in the vector space

@ There is no equivalent of “stop words” in bookmarks or tags

@ Two types

» Bookmark similarity graph. Weights are binary
» Tag similarity graph. Weights are tf-idf scores for the tags.

@ Both common entity graphs and similarity graphs are converted to
binary graphs by removing all edges with weight below such a
threshold that one million edges are kept.
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k-cores

@ Degree core of order kis o
the subgraph generated
by recursively removing
all nodes of degree less

than k

@ Here the 0 — coreis the
full graph

@ ltincludes isolated Py
vertices
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k-cores

@ Degree core of order k is
the subgraph generated
by recursively removing
all nodes of degree less
than k

@ Here the 1 — coreis the
full graph with isolated
vertices pruned
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k-cores

@ Degree core of order k is
the subgraph generated
by recursively removing
all nodes of degree less
than k

@ Here the 2 — core prunes
all tree structures
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k-cores

@ Degree core of order k is
the subgraph generated
by recursively removing
all nodes of degree less
than k

@ Here is the 3 — core
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k-cores

@ Degree core of order k is
the subgraph generated
by recursively removing
all nodes of degree less
than k

@ The 4 — core is the same
as the 3-core.
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Density properties

@ Clustering coefficient
» for a vertex: number of actual edges between neighbours of a
vertex as a fraction of the total potential number.
» for a graph: average over all vertices (of degree > 1)
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Density properties

@ Clustering coefficient
» for a vertex: number of actual edges between neighbours of a
vertex as a fraction of the total potential number.
» for a graph: average over all vertices (of degree > 1)
@ K-core analysis

» We produce a sequence of k-core graphs, with increasing k
» We plot properties of these graphs as a function of k

*

*
*
*
*

diameter of largest component

size of largest component

average distance between vertex pairs
clustering coefficient

number of components
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Density properties

@ Scatter plots of the average clustering coefficient of the vertices
of:
» the same degree in the original graph versus degree
» the largest component in the k-core sequence of graphs versus k
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Exploration of our data set

@ Data set based on a Breadth first search of the friendship graph,
starting with the user with the most friends as seed
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Exploration of our data set
@ Data set based on a Breadth first search of the friendship graph,
starting with the user with the most friends as seed
@ 13,514 users
@ 4,574,587 bookmarks
@ 47,807 friendship connections
@ 6,876 of friendships are mutual
@ 643,889 tags in total

Counts (in K) urls url do- | Tags Wikipediga
mains words
Total number of | 4,575 1,106 644 4,098
unique terms
Terms used more | 1,017 483 303 1,978
than once
Terms used only | 3,558 623 341 2,120
once D_;\Ll-gopsllg
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Zipf distributions for bookmarks and tags
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Zipf distributions for bookmarks and tags
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@ Tail is Zipf-like

@ Head is flat (no “stop-word” behaviour)
@ Large fraction appearing only once
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Relating friendship with bookmark and tag similarity

| pair average over — | Friends | Non-friends |
k-common bookmarks | 1.931 0.372
bookmark cosine sim | 0.011 0.004
k-common tags 54.157 | 41.816

tag cosine sim 0.081 0.085

@ Compare friend and non-friend pairs
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k-common tags 54.157 | 41.816
tag cosine sim 0.081 0.085

@ Compare friend and non-friend pairs
@ Friends have stronger connections over bookmarks
@ Friends have similar connections over tags as non-tags

@ Conjecture: most tags are individualized, pertaining to the
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Density properties of common bookmark graphs

1 — 0.88
09 i _ 086
5 08 5 o084
3} + 2
LI £ om
S s g 08

. =0
£ 04 & g 078
S 03 3 076
R A Z om
5} 5]

0.1 1,,} - 0.72

0 0.7

110 100 1000 10000100000

degree

£
e

mwwww+++++ b

10 100 1000

DALHOUSIE
UNIVERSITY

Inspiring Minds

Evangelos Milios (Dalhousie Univ.) Social Bookmarking/Tagging Characterization June 18, 2008 19/28



Density properties of common tag graphs
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Density properties of bookmark similarity graphs
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Density properties of tag similarity graphs
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Observations

@ Low-degree vertices are dropped first as k increases

@ Such vertices have high clustering coefficients, hence
@ average clustering coefficient drops

@ As k keeps increasing, densification process prevails
@ average clustering coefficient increases
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Density properties of friendship graph
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@ Low degree vertices have high clustering coefficients, i.e.
@ friends of users with few friends are friends themselves
@ friends of users with large degrees are generally not connected
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How do plots look from random graphs with power-law
degree distribution?

@ Constant!
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How do plots look from random graphs with power-law
degree distribution?

@ Constant!

@ The fact that two vertices are friends of a third vertex does not
affect the probability of them being linked
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How do plots look from random graphs with power-law
degree distribution?

@ Constant!
@ The fact that two vertices are friends of a third vertex does not
affect the probability of them being linked

@ U-shaped curve of clustering coefficient vs k not consistent with
binomial random graphs or random graphs with a power law
degree distribution
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Largest component of common bookmark graph
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@ Average distance between pairs of vertices
@ Size as a function of k

@ Size is close to k, hence close to a clique
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Summary

@ Friendship correlates well with common / similar bookmarks but
not for tags
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Summary

@ Friendship correlates well with common / similar bookmarks but
not for tags

@ Maijority of tags are user-specific tags

@ Tags behave like words in text more than bookmarks
@ No equivalent of stop words for tags or bookmarks
@ Graphs deviate from power-law behaviour
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Computational Intelligence

* Impact Factor: 1.415

« ISl Journal Citation Reports® Ranking:

2006: 29/85 (Computer Science, Artificial Intelligence)
* Frequency: Bi-Monthly

« FOCAL AREAS
» Machine learning , incl.
» symbolic multi-strategy and cognitive learning
» Web intelligence and semantic web
« Discovery science and knowledge mining
» Agents and multi-agent systems
* Modern knowledge-based systems
 Key application areas of Al
* games, software engineering, e-commerce
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