

0

MiGA

Microsatellite Genome Analysis

Machine Learning and Knowledge Discovery Group

Computer Science Department

Aristotle University of Thessaloniki

In collaboration with the laboratory of

Population Genetics of Animal Organisms

Department of Genetics, Development and Molecular Biology

School of Biology

Aristotle University of Thessaloniki

Version 1.01

http://mlkd.csd.auth.gr/
http://www.csd.auth.gr/
http://www.auth.gr/
http://www.auth.gr/

1

1. User ‘s Guide

In this section we are going to describe the MiGA application.

1.1 Getting Started

To start MiGA application, double click on the MiGA.jar icon in the installation folder.

MiGA’s mainframe has 2 tabs. The first tab named “Ensembl or local” implements

SSR search for organisms included at ensembl database. The second tab named “File

from User” implements SSR search for FASTA file chosen by the user.

“Ensembl or local”

In that case, choose the organisms (one or more) you want to analyse and then click

on the button “Check last updated”.

Figure 1: List of Organisms

2

 In the next window (figure 1), there is a list with the organisms chosen before. For

each one of them, there is either a timestamp with the date and time from the last

update in the local database or a message indicates that the organism have to be

updated before proceed. The next figure (figure 2) shows the message that the

application shows for update or not.

Figure 2: Organisms do need to be updated and others do not

CAUTION! Internet connection is necessary for this step. If you choose Update,

program asks to choose those organisms you want to update. You can choose to

update every organism you want even if it is already updated, but it is wise to do

that only if the timestamp is really old because the update operation requires

several hours. Choose the checkbox for each organism you want to update, click on

the button “Update” and let the program update your local database.

CAUTION!! You can minimize the window but under no circumstances should you

close the window, the internet connection or the computer. After minimizing the

window – during update – the window will appear black until the end of the

update. There is no reason to worry about, the program continues execution

normally and will proceed to the next frame as long as the update is completed.

Updating speed depends on the internet connection’s speed and the computer’s

abilities. Update might need several hours to complete. As soon as the update is

completed, the previous window will show up and you can now choose the “Next”

button.

3

Once every chosen organism has been updated, you can proceed analysing their

genome in order to find SSR’s.

“File from User”

In this tab, you can choose the FASTA file you want to analyse. Click on the “Browse”

button and choose the file. Then, give a project name and click on “Start scanning”

button. Once file scanning is completed the next window will show up.

Figure 3: File from User

4

1.2 Final Window

The final window of the program has 2 tabs. This window will appear either you have

initially chosen “Ensembl or local” tab or “File from User” tab. In the first tab named

“Statistics” the user have to insert the parameters according to which the program

will search the genome for SSRs. The second tab, named “Sequence Retrieval”

returns the SSR’s sequence along with its flanking regions.

Statistics

The main choices on this tab are:

 Perfect

 Imperfect

 Compound

 Perfect Compound

 Imperfect Compound

Figure 4: Statistics Window

5

If choices 1. Perfect or 2. Imperfect have been

selected it is necessary to choose the

Motif/Period (Mono-Di-Tri-Tetra-Penta-Hexa

nucleotide) of the microsatellites SSRs.

More specifically for each SSR type chosen:

Perfect

In case perfect SSRs are chosen it is necessary to fill in the minumum SSR length (bp

– base pair).

Imperfect

In case imperfect SSRs are chosen it is necessary to fill in the maximum gap for

imperfect SSRs (bp – base pair) and the minimum SSR length before the given gap

(bp – base pair). For Instance:

 Maximum gap for imperfect SSRs: 2 bp

 Minimum SSR length before given gap: 8 bp

6

Compound Perfect/Imperfect

In case compound SSRs are chosen you have to choose the type of the compound

SSRs you are seeking for (Perfect/Imperfect Compound).

After that, it is necessary to fill in the minimum SSR length (bp – base pair) and the

maximum gap for compound SSRs (bp) parameters.

Once select search parameters click on the “Run” button and wait for a few minutes

until results are shown. One .txt file opens in which you can see all the wanted SSRs

found with information about their period (for perfect SSRs), their start and end base

pair in the genome as well as the Path (see Sequence Retrieval). In addition, in the

program’s folder there is now a folder named organisms including folders for each

one of the organisms you have selected. In every one of them there is a folder

named results with the results file produced. Besides that, there is also one folder

named stats with the statistical representation (summary statistics) for each one of

the organisms chosen.

Sequence Retrieval

This is the other tab on the final window. You can fill in Start, End, and Path

(Chromosome or field) fields for one SSR that has been found and the program

produces SSR’s sequence for any use (e.g. primers design etc.). More specific, copy

and paste the information from the results file into the fields and then click on the

7

“Retrieve” button. There is also an option with which you can retrieve flanking

regions along with the SSR.

8

2. Results – Statistics

The program developed provides the user with two main functions. The first function

has to do with genome retrieval and analysis used in microsatellite loci search and

can assist in the development of primers. The second function has to do with the

statistical presentation of these results which can be of great help understanding the

evolutionary relationship among species.

Initially, the program accesses the local database (LoBid). Both retrieved data and

the results obtained from the execution of the program on them will be stored in

LoBid.

Then, the user is asked to choose the type of biological data that wants to analyze.

There are two possible modes. The user can either chooses to update organisms via

Ensembl (online biological database) and then analyze their genome, or to analyze

already stored in LoBid data, as well as sequences saved in FASTA form (.fa or .fasta)

from user input files. Once the data retrieval is finished, they are saved in LoBid

database and txt files (slices), from where, eventually, will start the sequence

analysis for microsatellite loci search.

2.1 Using Genomes from Ensembl

In this section we will describe MiGA’s results when the user chooses to analyze

genomes from organisms downloaded from ensembl.

Results

The results of the program are displayed to the user in text files. Each file contains as

a header the organism name and all the search parameters used. Then, there are

information about SSRs found during the process. These information are about:

 The motif of the repeated bases.

9

 The number of repeats for the motif in the SSR found.

 The start and the end of the SSR in the sequence.

 The path with which the user can retrieve the SSR sequence and its flanking

regions.

Statistical analysis of SSRs (Tables Description)

Along with the results obtained in text files, the program provides a statistical

representation of these. A separate text file is created which includes tables

organized by the SSR type found during the search. At the bottom of the text file

there is a table with the summary statistics of the search. Below there are some

notes explaining the structure and content of every statistical table:

Every table has to do with one type of SSR (perfect, imperfect, perfect_compound,

imperfect_compound).

Every table has the folder name (organism name) and the search parameters, given

by the user, as a header. In this folder will be every result and file related with each

organism analysis.

Both perfect (Figure 5) and imperfect (Figure 6) SSRs tables consist of 10 columns in

each of which it is shown each of the following statistical information:

 The type of the repeated motif (mono-/di-/tri-/tetra-/penta-/hexa-

nucleotide).

 The count of each type of SSR found in the analyzed genome. e.g. 21059

mononucleotide repeats found in the genome – picture 1.

 The total size that has each type of SSR found (count in base pair (bp)).

 The hundred percent (%) incidence of the nucleotide base of Adenine (A) on

SSR found. e.g. 45.61% of the nucleotide bases found in the perfect SSR of

drosophila is adenine – picture 1.

 The hundred percent (%) incidence of the nucleotide base of Thymine (T) on

SSR found.

 The hundred percent (%) incidence of the nucleotide base of Cytosine (C) on

SSR found.

10

 The hundred percent (%) incidence of the nucleotide base of Guanine (G) on

SSR found.

 The relative frequency of each SSR type (count of SSR type (bp)/ total count

of SSR in genome (bp)). e.g. for the perfect SSR of drosophila is 21059/247191

= 0.085 – picture 1.

 The relative abundance of each SSR type related to the genome length

analyzed (total size of each type of SSR (bp)/ total genome length (bp)). e.g.

for the perfect SSR of drosophila is 313362/168736537 = 0.002 – picture 1.

 The relative abundance of each SSR type related to the genome length

analyzed (total size of each type of SSR (bp)/ total length of SSR found in the

genome (bp)). e.g. for the perfect SSR of drosophila is 313362/3615206 =

0.087 – picture 1.

Figure 5. Statistical representation of perfect SSRs (example)

11

Figure 6: Statistical representation of imperfect SSRs (example)

Compound SSRs tables (Figure 7 and 8) also consist of 10 columns. The only

difference between compound SSRs tables and those of perfect and imperfect is the

first from the left column where there is now the type of the SSRs found (Compound

Perf. or Compound Imper.) instead of the type of the repeated motif. As a result of

the lack of a specific type of one repeated motif, the table has one row – instead of

six (perfect and imperfect) – which is the total statistics of the compound SSRs

found.

Figure 7: Statistical representation of compound perfect SSRs (example)

12

Figure 8: Statistical representation of compound perfect SSRs (example)

The summary statistics table (Figure 9) appears at the bottom of the txt file and has

similar format with the compound SSRs tables. In the first column of it there are the

4 types of SSRs that can be found and in the bottom of the table there is one row for

the total statistics of the SSRs found.

Figure 9: Statistical representation of all SSRs found (example)

13

2.2 Using Input Files from User

In this section we will describe MiGA’s results when the user chooses to analyze an

own FASTA file with biological sequences.

Results

The results of the program are displayed to the user in text files. Each file contains as

a header the project name given by the user and all the search parameters used.

Then, there are information about SSRs found during the process. These information

are about:

 The microsatellite sequence as it is.

 The start and the end of the SSR in the sequence.

 The path with which the user can retrieve the SSR sequence and its flanking

regions.

Statistical analysis of SSRs (Tables Description)

Along with the results obtained in text files, the program provides a statistical

representation of these. A separate text file is created which includes tables

organized by the SSR type found during the search. At the bottom of the text file

there is a table with the summary statistics of the search. All tables have the same

format with those created when analysing genomes downloaded from ensembl.

2.3 Sequence and Flanking Region Retrieval

One of the major goals of the research on genome analysis in bioinformatics, and

more specifically the analysis of microsatellite sequences, is to clarify the

composition of the flanking regions of each microsatellite loci. The importance of

this goal is understandable if someone consider that flanking regions provide a great

14

guide to the efforts of biologists to gain “access” on genome parts necessary for each

one of their researches.

 The program provides the user the ability to retrieve microsatellite sequence

found using the path that is stored in the results files as mentioned before. Both in

the case of using genomes from ensembl and in the case of upload file from the user,

next to the search parameters tab there is a tab for sequence retrieval.

 The one thing the user has to do in order to retrieve one SSR sequence is to

copy the path, the start and the end of the SSR as given in the results file. The

program identifies the SSR and the slice from which it is retrieved in the local

database (LoBid) and provides the user interface with the sequence as it is. In the

same way, the program provides the user the additional opportunity of flanking

regions retrieval for each SSR, which are the regions before and after the

microsatellite sequence.

3. Pseudocode

Below you can find in pseudocode important sections of our application.

function findMonoNucleotideSSR(seq){

 for i=0 to seq.length-1{

 if seq_char[i] != 'N'{

 if seq_char[i] == seq_char[i+1]{

 CurrentSSR = seq_char[i];

 Repeats = 2;

 i++;

 while seq_char[i] == seq_char[i+1]{

 Repeats++;

 i++;

 }

 Save -> SSR , Repeats , End

 }

 }

 }

}

15

function findXNucleotideSSR(String seq, int motif_len){

 for i=0 to seq.length-1{

//to be sure that using recursion it will not give OutOfBoundsException

 If(seq.Substring(i,i+motif_len) =seq.Substring(i+motif_len,i+2*motif_len)){

 CurrentSSR = seq_char[i];

 Repeats = 2;

 i=i+motif_len;

 while seq_char[i] == seq_char[i+1]{

 Repeats++;

 i=i+motif_len;

 }

 Save -> SSR , Repeats , End

 Recursively call findXNucleotideSSR(seq.Substring(i,seq.ending),motif_len);

 i=seq.length; // to stop this loop

 }

 }

}

