

Machine Learning
and

Knowledge Discovery Group

Department of Informatics, Aristotle University of Thessaloniki, Greece

PolyA-EP
version 1.0

User Guide

Author: George Tzanis

Date: July 13th, 2008

1. Introduction

PolyA-EP is a tool for mining interesting emerging patterns (in particular chi emerging

patterns [1]) from mRNA sequences in order to predict polyadenylation sites. PolyA-EP has

been developed in JAVA. It provides a number of functions for training and testing classifiers

based on interesting emerging patterns.

2. Configuration

In this paragraph the required configuration for using PolyA-EP is described. Table 1 presents

the default configuration file.

Table 1: Configuration file.
// positive and negative training datasets
posTrain=pos_train.txt
negTrain=neg_train.txt

// positive and negative test datasets
posTest=pos_test.txt
negTest=neg_test.txt

// positive and negative training datasets in transactional format
posTrans=pos_trans.txt
negTrans=neg_trans.txt

// output files for discretization thresholds in text and binary format
thresholdsBin=thresholds
thresholdsTxt=thresholds.txt

// output files for mined emerging patterns in text and binary format
posEmergingBin=pos_ep
negEmergingBin=neg_ep
posEmergingTxt=pos_ep.txt
negEmergingTxt=neg_ep.txt

// output files for test results
posTestResults=pos_test_results.txt
negTestResults=neg_test_results.txt

// parameters for the algorithms
alphabet=A;C;G;T
maxPatternLength=6
elements=-130,-31,FUE;-30,-13,NUE;-12,15,CE;16,50,NDE
posMinSup=0.2
negMinSup=0.2
posMinGrowth=2
negMinGrowth=2

All possible parameters are described in more detail in the following lines:

• posTrain. This parameter specifies the path of the dataset that contains the training

positive examples.

• negTrain. This parameter specifies the path of the dataset that contains the training

negative examples.

• posTest. This parameter specifies the path of the dataset that contains the positive

instances for testing.

• negTest. This parameter specifies the path of the dataset that contains the negative

instances for testing.

• posTrans. This parameter specifies the path of the file that contains the positive examples

represented in transactional format.

• negTrans. This parameter specifies the path of the file that contains the negative

examples represented in transactional format.

• thresholdsBin. This parameter specifies the path of the file that contains the discretization

thresholds in binary format.

• thresholdsTxt. This parameter specifies the path of the file that contains the discretization

thresholds in text format (This file is used for presenting thresholds to user).

• posEmergingBin. This parameter specifies the path of the file that contains the positive

interesting emerging patterns in binary format.

• negEmergingBin. This parameter specifies the path of the file that contains the negative

interesting emerging patterns in binary format.

• posEmergingTxt. This parameter specifies the path of the file that contains the positive

interesting emerging patterns in text format. (This file is used for presenting emerging

patterns to user).

• negEmergingTxt. This parameter specifies the path of the file that contains the negative

interesting emerging patterns in text format. (This file is used for presenting emerging

patterns to user).

• posTestResults. This parameter specifies the path of the file that contains the testing

results of positive instances. Each line of this file contains a value (0 for positive or 1 for

negative) that is the prediction for the instance of the respective line in posTest dataset.

• negTestResults. This parameter specifies the path of the file that contains the testing

results of negative instances. Each line of this file contains a value (0 for positive or 1 for

negative) that is the prediction for the instance of the respective line in negTest dataset.

• alphabet. This parameter specifies the alphabet of the input sequences. The different

literals can be separated either by a comma “,” or a colon “;”. For example, the following

alphabets could be used: (1) A;C;G;T, or (2) A;C;G;U, or (3) a;c;g;t, or (4) a;c;g;u.

• maxPatternLength. This parameter specifies the maximum pattern (k-gram) length that

will be used for representing the sequences. For example, if maxPatternLength = 3, then

patterns of length 1, 2, and 3 will be used.

• elements. This parameter specifies the various elements around polyadenylation site. A

number of elements separated by colons should be given. For each element three

parameters should be specified, namely the start position, the end position, and a short

name for this element. In the configuration file example that is presented in Table 1

(elements=-130,-31,FUE;-30,-13,NUE;-12,15,CE;16,50,NDE), four elements are defined

(separated by colons), named FUE, NUE, CE, and NDE respectively. FUE is found in

positions -130 to -31, NUE in positions -30 to -13, CE in positions -12 to 15, and NDE to

positions 16 to 50, with respect to the polyadenylation site.

• posMinSup. This parameter specifies the minimum support threshold for mining positive

interesting emerging patterns.

• negMinSup. This parameter specifies the minimum support threshold for mining negative

interesting emerging patterns.

• posMinGrowth. This parameter specifies the minimum growth rate threshold for mining

positive interesting emerging patterns.

• negMinGrowth. This parameter specifies the minimum growth rate threshold for mining

negative interesting emerging patterns.

• Comments can be written in a line, if this line starts with two slashes “//”. This line will

be ignored during parsing of configuration file. If two slashes appear in a location

different than the start of a line, then the parser will not consider the text following the

slashes as a comment and probably an error message will appear.

3. Functions

In this paragraph the four different functions that are available in PolyA-EP are presented.

Function train

This function is used in order to train an emerging patterns classifier. It consists of two parts

including supervised discretization and transformation of the initial data in transactional

format firstly and mining of interesting emerging patterns secondly.

Input: posTrain, negTrain

Output: posTrans, negTrans, thresholdsBin, thresholdsTxt, posEmergingBin,

posEmergingTxt, negEmergingBin, negEmergingTxt

Parameters: alphabet, maxPatternLength, elements, posMinSup, negMinSup, posMinGrowth,

negMinGrowth

Use: java –jar polyaep.jar train configuration_file_path

Function test

This function is used in order to test an emerging patterns classifier that has been previously

built.

Input: posTest, negTest, posTrans, negTrans, thresholdsBin, posEmergingBin,

negEmergingBin

Output: posTestResults, negTestResults

Parameters: alphabet, maxPatternLength, elements

Use: java –jar polyaep.jar test configuration_file_path

Function discretize

This function is used in order to execute the first part of training phase only, which is the

supervised discretization and transformation of the initial data in transactional format.

Input: posTrain, negTrain

Output: posTrans, negTrans, thresholdsBin, thresholdsTxt

Parameters: alphabet, maxPatternLength, elements

Use: java –jar polyaep.jar discretize configuration_file_path

Function mine

This function is used in order to execute the second part of training phase only, which is the

mining of interesting emerging patterns.

Input: posTrans, negTrans

Output: posEmergingBin, posEmergingTxt, negEmergingBin, negEmergingTxt

Parameters: alphabet, maxPatternLength, elements, posMinSup, negMinSup, posMinGrowth,

negMinGrowth

Use: java –jar polyaep.jar mine configuration_file_path

4. Input Files

The format of the four input files (posTrain, negTrain, posTest, and negTest) is shown in

Table 2. Each line should contain a sequence that is consistent with the alphabet defined in

configuration file and a number that indicates where the position of the polyadenylation site

is. The sequence and the position of the poly(A) site should be separated by a comma. The

same format should be used in all four input datasets. In the case of datasets with negative

examples the second parameter indicates a position of the sequence that will be considered as

a negative poly(A) site example.

Table 2: Format of input files.
GATGTTGGGTTTTCATTGGTTACCACTTACCTG…GAGTGAGTGGAATTGTATTTTTTTTTTTAAAGA,301
ACTTAATCATATATGTAATTGTGTTCTTCTATT…TTTCTATTTTTCGATTGAAAATCATATAATTTA,301
ATTTAATATTGGTTGTTTTATAGCCTTTTCTAT…TATGTATTTAGTATTAAATTCCCATATAATTTA,301

.

.

.

5. References

[1] H. Fan. Efficient Mining of Interesting Emerging Patterns and Their Effective Use in

Classification, PhD Thesis, University of Melbourne, Australia, 2004.

